RAIO

RA8889

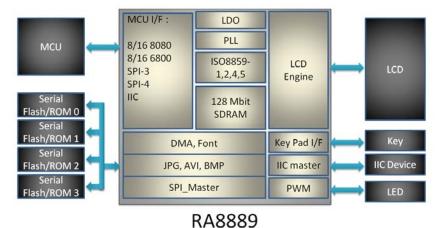
TFT LCD 文字图形控制器

规格书

July 7, 2020

RAiO Technology Inc.

©Copyright RAiO Technology Inc., 2020


1. 简介

RA8889 支持 CMOS 准位的接口 ,规格书内包含: 系统方块图、引脚图、AC/DC 电气特性、各个功能子方块、寄存器、省电模式的详细描述。

1.1 概况

RA8889 是一款低功耗及顯示功能強大的彩色 TFT 控制器,內部具有記憶體 SDRAM,為了可以快速為顯示記憶體進行螢幕更新,RA8889 支持 MCU 端 8080/6800 8/16-bit 非同步並列介面與 3/4 線 SPI 及 IIC 串列介面,提供多段的顯示記憶體緩衝區段,並提供畫中畫 (PIP)、透明度控制與顯示旋轉鏡像及內建 JPEG Decoder 等功能。

1.2 系统与芯片示意图

MAGGGG

Figure 1-1: System Diagram

2. 特性

2.1 图框缓冲区

● 内建 128Mb SDRAM

2.2 主控端接口

- 支持 8080/6800 8/16-bit 异步并列接口
 - 对于扩展的 MPU 周期提供 Xnwait 的信号以供交握
- 支持串行主控端接口,例如. IIC, 3/4-wire SPI
- 对于图像数据写入支持镜像与旋转的功能

2.3 输入显示数据格式

- 1bpp: 单色 (1-bit/像素)
- 8bpp: RGB 3:3:2 (1-byte/像素)
- 16bpp: RGB 5:6:5 (2-byte/像素)
- 24bpp: RGB 8:8:8 (3-byte/像素或 4-byte/像素)
 - Index 2:6 (64 索引色/像素并带透明度属性)
 - αRGB 4:4:4:4 (4096 索引色/像素并带透明度属性)
 - αRGB 8:8:8:8 (8 bit alpha, 24bpp 色深)

2.4 显示模式

● 使用者可以设定 24/18/16-bit TFT 显示输出方式

2.5 支持多种屏幕分辨率

- 支持 16/18/24-bit CMOS 接口屏幕
- 支持屏幕分辨率最大可达 1366X800 像素 (注: 实际的面板分辨率是取决于 pixel clock 与色深)
 - QVGA: 320 x 240 x 16/18/24-bit LCD 屏幕
 - WQVGA: 480 x 272 x 16/18/24-bit LCD 屏幕
 - VGA: 640 x 480 x 16/18/24-bit LCD 屏幕
 - WVGA: 800 x 480 x 16/18/24-bit LCD 屏幕
 - SVGA: 800 x 600 x 16/18/24-bit LCD 屏幕
 - QHD: 960 x 540 x 16/18/24-bit LCD 屏幕
 - WSVGA: 1024 x 600 x 16/18/24-bit LCD 屏幕
 - XGA: 1024 x 768 x 16/18/24-bit LCD 屏幕
 - WXGA: 1280 x 768 x 16/18/24-bit LCD 屏幕
 - WXGA: 1280 x 800 x 16/18/24-bit LCD 屏幕
 - WXGA: 1366 x 768 x 16/18/24-bit LCD 屏幕

2.6 显示功能

- 使用者可自行定义 4 个 32X32 图形光标
- 显示窗口

显示窗口大小是经由定义 LCD 寄存器得到,而透过底图 (canvas) 寄存器设定可以对显示窗口进行全部或部分更新。工作窗口的大小与起始位置的分辨率在水平上必须是以 8 个像素的倍数,以垂直而言则是 1 个扫描线的倍数。窗口的坐标参考原点为左上角(即使在翻转图像或旋转文字时,亦不需要主控端处理)。

● 虚拟显示

虚拟显示可用于显示大于 LCD 面板尺寸的图像。 图像可以在任何方向上轻松滚动。

● 画中画 (PIP)

支持两个画中画窗口,当使能画中画窗口时则画中画窗口会永远显示在主窗口中。画中画窗口的大小与起始位置水平上是 4 个像素的倍数,垂直上则是一条扫描线。透过设定画中画窗口的起始位置可以达成图像的滚动。 画中画 1 的窗口永远显示在画中画 2 上面。

● 多重缓冲区

多重缓冲允许在缓冲区之间切换主显示窗口。 缓冲区的数量取决于欲写入缓冲区的影像大小。 多重缓冲允许通过切换缓冲区来执行简单的动画显示。

● 唤醒显示

唤醒显示效果如果被使能时,那唤醒时可以快速显示预先储存在 SDRAM 中的显示数据。这个功能是在 Standby 与 Suspend 模式唤醒时使用。

● 水平/垂直翻转显示

水平/垂直翻转显示功能只适用在显示上,对于其它功能子方块的读写是不影响的,在垂直翻转显示使能时 PIP 是被禁能的。

● 彩条显示 (Color Bar Display)

在没有 SDRAM 的情况下仍然可以以彩条的方式显示, 预设分辨率为 640x480 像素。

2.7 媒体解码单元 (MDU)

- 自动分辨 JPEG, BMP 和 AVI 格式。
- 支持 JPEG baseline profile,YUV444, YUV422, YUV420, YUV400,不支持 restart interval 格式。
- 支持带原始数据 (未压缩) 的标准 BMP 格式。
- 支持 AVI (motion JPEG) 视频显示。
- 提供 AVI 显示的自动播放、暂停和停止功能。

2.8 区块传输引擎 (BTE)

- 2D BitBLT 引擎
- 具有光栅操作与颜色扩展的复制数据
- 方型填满与图样填满
 - 提供使用者定义的 8x8/16x16 像素的图样
- 混合透明 (Opacity)

使用混合透明模式可以将两个图档混和成新的图形,然后再用画中画的方式显示出来。在处理的速度上而言混合透明与待处理图档大小有关,此外,亦可处理单张图档。

- 纯色抽离 (Chroma-keying) 功能: 经由指定的 RGB 颜色来做为透明的参考并进行混和影像的处理。
- 图形混合透明 (Alpha-blending): 根据寄存器设定透明的比率来进行两张图像的混成 (淡入与淡出功能必须被使能)。
- 像素混合透明 (Alpha-blending): 根据 RGB 格式来混合影像,例如 8bit RGB,则 MSB 2bit 为α值。

2.9 几何绘图引擎

● 支持画点、线、曲线、圆、椭圆、三角形、矩形、圆角矩形

2.10 SPI 主接口

2.10.1 文字功能

- 内建 ISO/IEC 8859-1/2/4/5. 12x24
- 支持集通 16X16/24X24/32X32 串行字型 ROM 例如 Uni-code/BIG5/GB 等等,支持的集通型号有 GT21L16T1W、GT30L16U2W、GT30L24T3Y、GT30L24M1Z、GT30L32S4W、GT20L24F6Y、GT21L24S1W
- 支持使用者自定义字型半角 (8x16/12x24/16x32) 与全型
- 对于写入文字支持可程序文字光标
- 支持垂直水平放大字型 X1, X2, X3, X4 倍数
- 支持文字 90 度旋转

2.10.2 DMA 功能

- 支持外部串行闪存 (serial flash) 数据复制至图框缓冲区
- 支援外部閃存 Signle/Dual/Quad mode

2.10.3 一般主 SPI 功能

- 兼容 Motorola SPI 规格
- 16 bytes 读取深度的 FIFO
- 16 bytes 写入深度的 FIFO
- 在 Tx FIFO 完全清空并且 SPI Tx/Rx 引擎闲置时会发出中断

2.10.4 IDEC 功能

- 支持外部串行闪存 (serial flash) 数据透過 MDU 至图框缓冲区
- 支援外部串行閃存 Quad mode

2.11 IIC 接口

- IIC master interface
 - 可以使用在扩充 I/O device,例如在屏幕控制的触控屏幕
 - 支持标准模式 (100kbps) 与快速模式 (400kbps)

2.12 脉宽调制与定时器

- 内建两个 16-bit 计数器
- 一个 8-bit pre-scalars 与一个 4-bit 除频
- 输出波形的工作周期是可程序化的
- 自动重加载模式或单击模式
- Dead-Zone 保护

2.13 按键接口

- 支持 5x5 键盘 (必须使用与 GPIO 的共享脚)
- 可程序化的扫描周期
- 支持长按键与重复键
- 支持同时按两键

注: 在限制条件下可以支持同时按 3 键 (3 个键线段组成角度必须不是 90°)

● 支持键盘唤醒功能

2.14 省电模式

- 支持3种省电模式
 - 待机 (Standby)、休眠 (Suspend) 与睡眠 (Sleep) 模式
- 可以使用主控端、按键、外部事件唤醒

2.15 频率来源

- 内建可程序锁相回路 PLL 以提供系统频率、LCD 扫描频率与 SDRAM 频率使用
- 单一石英晶体震荡输入: (XI/XO: 10MHz)
- 内部核心最大系统频率 (最大值 120MHz)
- SDRAM 频率 (最大值 166MHz)
- LCD 屏幕扫描频率 (最大值 100MHz)

2.16 复位

- 接受外部硬件复位
- 软件命令复位

2.17 电源

● I/O 电压: 3.3V +/- 0.3V

● 内建 1.2V LDO for core power

2.18 封装

- LQFP-100
- 操作温度: -40℃ ~85℃

3. 产品封装

3.1 RA8889 封装引脚图

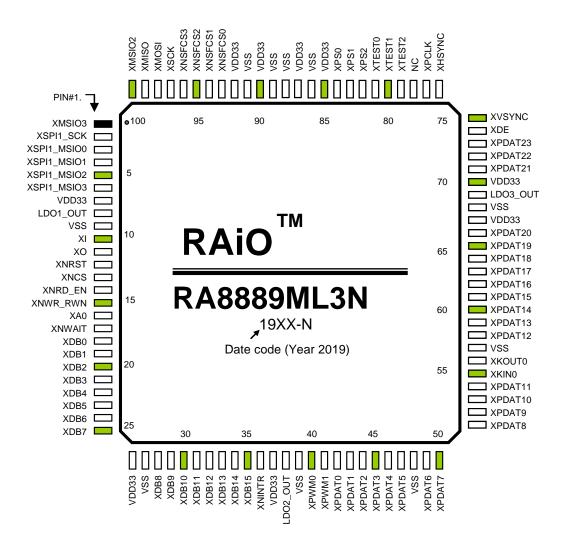


Figure 3-1

3.2 封装尺寸

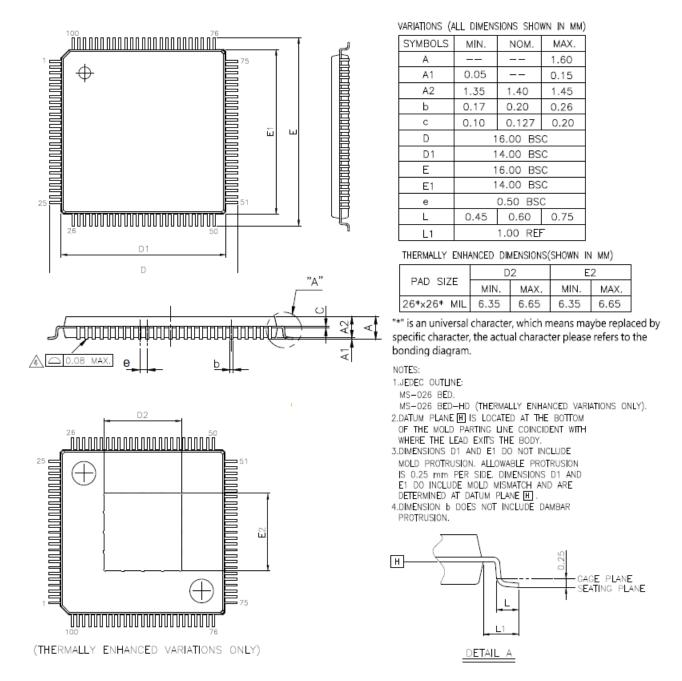


Figure 3-2: RA8889 Package Outline Dimensions

4. 引脚定义

4.1 并列主控端接口 (25 引脚)

引腳名稱	I/O	引 腳 說 明
		数据总线
		数据总线提供主控端与RA8889 的并列接口数据传送。
V	10	XDB[15:8] 可以设定GPIO (GPIO-A[7:0]), 前提是没有设定成 8080/6800
XDB[15:0]	(8mA)	16-bits并列接口数据总线。
		XDB[7:0] 如果在串行主控端模式下,此讯号也提供为串行的主控端信号使用,
		请参考串行主控端接口章节。
		命令/数据 选择
XA0	ı	此引脚被使用在选择命令还是数据的周期。
AAU	I	XA0 = 0, 状态读取/命令写入。
		XA0 = 1,数据读取/数据写入。
		芯片使能
XNCS	I	低电平使能,如果主控端设定 RA8889 为串行主控端模式,则此引脚设定为
		GPI-B0 并且读取引脚的值,引脚内部有提升电阻。
		使能/读取使能
		当微处理器是 8080 系列,此引脚是当作 XnRD 使用 (读取数据),低电平动作。
XNRD_EN	ı	当微处理器是 6800 系列,此引脚是当作 XEN 使用 (使能信号),高电平动作。
(XEN)	'	如果主控端接口设定成串行主控模式,那么此引脚则为 GPI-B1,并且可读取引
		脚上的电压值。
		内建提升电阻。
		写入/读写
		当微处理器接口是 8080 系列,此引脚会成为 XnWR (数据写入),低电平动作。
XNWR_RWN	ı	当微处理器接口是 6800 系列,此引脚会成为 XRnW (数据 读取/写入),读取
(XRnW)		时是高电平动作,写入是低电平动作。
		如果主控端接口是设定成串行主控模式,那么此引脚将会成为 GPI-B2。
		内建提升电阻。
XNINTR	0	中断信号输出
	(8mA)	告知主控端目前内部状态的中断输出。
	0	等待信号输出
XNWAIT	(8mA)	当 XnWAIT 为 high,表示 RA8889 已经准备好传输数据,当 XnWAIT 为 low,
	, ,	微处理器应该进入等待周期。
		并列/串行 主控端接口选择
XPS[2:0]		00X: (并列主控端) 8080 8/16-bits 数据总线接口。
	I	01X: (并列主控端) 6800 8/16-bits 数据总线接口。
		100: (串行主控端) 3-wire SPI。
		101: (串行主控端) 4-wire SPI。
		11x: (串行主控端) IIC。
		注 :
		如果主控端接口设定成并列主控端模式,那么 XPS[0] 为外部中断接脚。

4.2 串行主控端接口 (与并列主控端接口)

引腳名稱	I/O	引 腳 說 明		
XSSCL	I	SPI 与 IIC 频率		
(XDB[7])		XSSCL、3-wire、4-wire 串行或 IIC 接口频率。		
		IIC 数据/4-wireSPI 数据输入		
XSSDI XSSDA	1	3-wire SPI 接口: NC,请连接到 GND。		
(XDB[6])	'	4-wire SPI 接口: XSSDI 串行接口数据输入。		
		IIC接口: XSSDA 串行接口输入输出双向。		
	Ю	3-wire SPI 数据/4-wireSPI 数据输出/IIC Slave 位置选择		
XSSD		3-wire SPI I/F: XSSD,串行接口输入输出双向数据传输。		
(XDB[5])		4-wire SPI I/F: XSSDO,串行接口数据输出。		
		IIC接口: XIICA[5],IIC 设备地址 bit [5]。		
V606	I	SPI 使能/IIC Slave 地址选择		
XnSCS (XDB[4])		XnSCS,在 3-wire 与 4-wireSPI 串行接口中,此引脚为使能信号。		
(312-[1])		IIC 接口: XIICA[4],IIC 设备地址 bit [4]。		
XIICA[3:0] (XDB[3:0])	I	IIC 接口: IIC Slave 地址选择		
		XIICA[3:0],在 3-wire 与 4-wire SPI 接口: NC,请连接到 GND。		
		IIC 接口: IIC 设备地址 bit [3:0]。		

4.3 Serial Flash 或 SPI master 接口 (14 引脚)

引腳名稱	1/0	引腳說明
XNSFCS0	IO (8mA)	外部 Serial Flash/ROM SPI 芯片选择 0 SPI 芯片选择接腳#0 使用在 Serial Flash/ROM 或 SPI 裝置選擇上。 *如果 SPI master 被禁能,那麼此引脚可以被程序規劃成 GPIO (GPIO-C3),预 设 GPIO-C3 为輸入功能。
XNSFCS1	外部 Serial Flash/ROM SPI 芯片选择 1 SPI 芯片选择腳#1 使用在 Serial Flash/ROM 或 SPI 裝置選擇上。 * 如果 SPI master 被禁能,那么此引脚可以被程序规划成 GPIO (GPIO-C4) 预设 GPIO-C4 为输入功能。 *如果 xtest[2:1]不等於 01b 那麼在 reset 週期時會自动 pull-high。	
XNSFCS2	IO (8mA)	外部 Serial Flash/ROM SPI 芯片选择 2 SPI 芯片选择腳#2 使用在 Serial Flash/ROM 或 SPI 裝置選擇上。
XNSFCS3	IO (8mA)	外部 Serial Flash/ROM SPI 芯片选择 3 SPI 芯片选择腳#3 使用在 Serial Flash/ROM 或 SPI 裝置選擇上。
хэск	IO (8mA)	SPI 串列时钟 此引脚是串列时钟輸出,主要是給 Serial Flash/ROM 或 SPI 裝置使用。 * 如果 SPI master 接口被禁能,那么此引脚可以被程序规划为 GPIO (GPIO-C0); 预设 GPIO-C0 为输入功能。

引腳名稱	I/O	引 腳 說 明			
		主輸出從輸入			
		Single 模式: Serial Flash/ROM 或 SPI 裝置輸入資料用。對 RA8889 而言此腳			
VMOOL	10	为輸出。			
XMOSI (XSIO0)	IO (8mA)	Dual 模式: 此引脚为雙向資料傳送#0 (SIO0),此功能只能在 Serial flash DMA			
(= = = ,	(3)	使用。			
		*如果 SPI master 接口被禁能,那么此引脚可以被程序规划为 GPIO			
		(GPIO-C1); 预设 GPIO-C1 为输入功能。			
		主輸入從輸出			
		Single 模式: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此腳			
XMISO	IO	为輸入。			
(XSIO1)	(8mA)	Dual 模式: 此引脚为雙向資料傳送#1 (SIO1)。此功能只能在 Serial flash DMA			
		使用。			
		*如果 SPI master 介面被禁能,那麼此引脚可以被程序規劃为 GPIO			
		(GPIO-C2),預设 GPIO-C2 为輸入功能。			
V0100	Ю	從輸入 IO2			
XSIO2	(8mA)	Qaud mode: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此			
		腳为輸入。			
VOICE	IO (8mA)	從輸入 IO3			
XSIO3		Qaud mode: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此			
		腳为輸入。			
	10	SPI 串列时钟 (SPI 1) 此引脚是串列时钟輸出,主要是給 Serial Flash/ROM 或 SPI 裝置使用。			
XSPI1_SCK	IO (8mA)	* 如果 SPI master 介面被禁能,那麼此引脚可以被程序規劃为 GPIO			
	(-)	(GPIO-C0);預设 GPIO-C0 为輸入功能。			
		主輸出從輸入 (SPI 1)			
		左軸山(旋軸)			
		为輸出。			
XSPI1_MSIO0	IO (0 - A)	Dual 模式: 此引脚为雙向資料傳送#0 (SIO0),此功能只能在 Serial flash DMA			
_	(8mA)	使用。			
		*如果 SPI master 介面被禁能,那麼此引脚可以被程序規劃为 GPIO			
		(GPIO-C1); 預设 GPIO-C1 为輸入功能。			
		主輸入從輸出			
XSPI1_MSIO1		Single 模式: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此腳			
		为輸入。			
	IO (8mA)	Dual 模式: 此引脚为雙向資料傳送#1 (SIO1)。此功能只能在 Serial flash DMA			
		使用。			
		*如果 SPI master 介面被禁能,那麼此引脚可以被程序規劃为 GPIO			
		(GPIO-C2),預设 GPIO-C2 为輸入功能。			

引腳名稱	I/O	引 腳 說 明		
		從輸出 IO 2 (SPI 1)		
XSPI1_MSIO2	IO (8mA)	Qaud mode: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此		
	()	腳为輸入。		
	10	從輸出 IO 3 (SPI 1)		
XSPI1_MSIO3	IO (8mA)	Qaud mode: Serial Flash/ROM 或 SPI 裝置輸出資料用。對 RA8889 而言此		
	(=::::)	腳为輸入。		

4.4 PWM 接口 (2 引脚)

引腳名稱	I/O	引腳說明			
	IO (8mA)	PWM 信号输出 1			
XPWM0		XPWM 0 的输出模式可以在寄存器中指定。			
XI WINO		如果 PWM 被禁能,那么此引脚可以被程序规划为 GPIO (GPIO-C7),预设			
		GPIO-C7 是输入功能或是输出核心频率。			
	IO (8mA)	PWM 信号输出 2 / 频率 3 输入(屏幕扫描频率)			
		当 XTEST[0]为低电平时:			
VDVAVAA		XPWM1 可以被设定为输出其输出模式可经由寄存器设定来完成。那么其输出			
XPWM1 (XCLK3)		可以指定为标准的 XPWM1 功能,oscillator 频率输出或是 SCAN 频宽不足与			
(210 21 10)		超过内存地址的错误标志。			
		当 XTEST[0] 为高电平时:			
		XPWM1 引脚就是外部屏幕扫描频率 3 输入。			

4.5 键盘扫描 (10 引脚)

引腳名稱	I/O	引腳說明		
	I	按键数据或 GPIs (General Purpose Input)		
XKIN[4:0]		按键数据输入 (预设),内建 pull-up 电阻。		
AKIIN[4.0]		XKIN[0] 具有 IIC master 的 XSCL 功能。		
		In RA8889,XKIN [4:1] 与 XPDAT、GPIO-D 共享引脚。		
	Keypad 闪控或 GPOs (General Purpose Output)			
XKOUT[4:0]	0	Keypad 矩阵使用闪控扫描键盘,引脚上为 open-drain 输出 (预设)。		
	(2mA)	XKOUT[0] 具有 IIC master 的 XSDA 功能。		
		In RA8889,XKOUT [4:1] 与 XPDAT、GPIO-D 共享引脚。		

4.6 LCD 屏幕数字接口 (28 引脚)

引腳名稱	I/O	引腳說明					
		屏幕扫描频率					
XPCLK	O (8mA)	屏幕扫描频率兼容于通用的 TFT 接口信号。					
	(OITIA)	此信号为 SPLL	驱动产生。				
	0	VSYNC Pulse	<u>10.747 = 1</u>				
XVSYNC	(4mA)	垂直同步信号 V	/SYNC 兼容·	于通用的 TF	T接口信号。		
XHSYNC	O (4mA)	HSYNC Pulse	10)410 米京	C	- k - k - 1		
	, ,	水平同步信号 -	ISYNC 兼谷	广迪用的 IF	I 接口信亏。		
XDE	O (4m A)	Data 使能					
	(4mA)	通用 TFT 接口的	的 data 有效或	data 使能位	言号。		
		LCD 屏幕数据总	总线				
		输出数据至 7	ΓFT LCD 数	(据总线,	RA8889 可约	至由寄存器:	没定以支持
		64K/262K/16.7I	M		不同的设定法	医结相对应的	RCB 总线
		04102021010.71	W 凸/水, 及/I.	14 7 0 11 11		ESEAEV1) (777 H.1)	八〇〇 心炎。
		Pin Name		Digital TE	T Interface]
		TFT output	11b	10b	01b	00b	
		Setting	(GPIO)	(16-bits)	(18-bits)	(24-bits)	
		XPDAT[0]	B0				
		XPDAT[1]		PIO-D1/ XKI		B1	
		XPDAT[2]	GPIO-D6	/ XKIN[4]	B0	B2	
		XPDAT[3]	GPIO-E0	B0	B1	B3	
		XPDAT[4]	GPIO-E1	B1	B2	B4	
		XPDAT[5]	GPIO-E2	B2	B3	B5	
		XPDAT[6] XPDAT[7]	GPIO-E3 GPIO-E4	B3 B4	B4 B5	B6 B7	
XPDAT	10	XPDAT[8]		PIO-D2/ XKI		G0	-
[23:0]	IO (4mA)	XPDAT[9]		O-D3/ XKO		G1	
[23.0]		XPDAT[10]	GPIO-E5	G0	G0	G2	
		XPDAT[11]	GPIO-E6	G1	G1	G3	
		XPDAT[12]	GPIO-E7	G2	G2	G4	
		XPDAT[13]	GPIO-F0	G3	G3	G5	
		XPDAT[14]	GPIO-F1	G4	G4	G6]
		XPDAT[15]	GPIO-F2	G5	G5	G7	
		XPDAT[16]		O-D4/ XKO		R0	
		XPDAT[17]		O-D5/ XKO		R1	
		XPDAT[18]	GPIO-D7/		R0	R2	
		XPDAT[19]	GPIO-F3	R0	R1	R3	
		XPDAT[20]	GPIO-F4	R1	R2	R4	
		XPDAT[21]	GPIO-F5	R2	R3	R5	
		XPDAT[22]	GPIO-F6	R3	R4	R6	
		XPDAT[23]	GPIO-F7	R4	R5	R7	J
		*未使用的引脚可以被程序规划成 GPIO-D/E/F(预设) 或 XKIN/XOUT,					
		预设是 18bpp 色	深模式,因此	XPDAT[17:16	6/8:9/1:0] 预设	是 GPI 模式。	

4.7 频率与复位与测试模式 (6 引脚)

引腳名稱	I/O	引 腳 說 明
		Crystal 输入/Clock 1 输入(核心频率-core clock)
VI		Crystal Oscillator 必须是在 10MHz。
XI (XCLK1)	I	当 XTEST[0]设为低电平时,此引脚是给内部的 crystal 电路使用,而此引脚应
, ,		该连接外部 crystal 电路,这将可以产生 RA8889 的频率信号。
		当 XTEST[0]设为高电平时,此引脚被拿来当作外部频率 1 输入。
хо	0	Crystal 输出
		此引脚为内部 crystal 电路输出,而此引脚应该连接至外部 crystal 电路。
	I/OC	复位输入信号
XNRST		为了避免噪声产生错误的复位信号,外部复位信号的准位必须最少要有 256
		OSC 的频率周期。
	I	频率测试模式
		内建 pull down 电阻
XTEST[0]		此引脚是提供给芯片测试使用的,在标准操作上此引脚应该要连接至 GND。
		0: 标准模式,使用内部 PLL 频率。
		1: 忽略 PLL, 芯片频率改使用外部 CLK1I、CLK2I、CLK3I 输入。
	I	芯片测试模式
XTEST[2:1]		00: 标准模式。
		01: 令 SPI master 引脚浮接 (使用在 in-system-programming)。
		1X: 保留。

4.8 电源与接地

引腳名稱	I/O	引 腳 說 明		
LDO1_OUT LDO2_OUT LDO3_OUT	Р	LDO 外接电容 外接 1uF 电容到地。		
VDD33	Р	IO VDD 3.3V IO 电源输入。		
VSS	Р	GND IO Cell/Core 接地。		